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Various numerical solutions of the shallow water equations in two dimensions are studied 
in an effort to develop a computational technique applicable to hydrodynamics in spherical 
geometry. The equations are first cast in a form which allows periodic boundary conditions in 
both angular coordinates. Explicit numerical solutions using leap-frog centered differencing in 
time and either second, fourth, or compact fourth order centered spatial differencing are 
studied. The fourth order compact differencing is found to be easily adapted to spherical 
geometry and is superior to the second order technique. We also consider an alternating- 
direction implicit (ADI) scheme in an attempt to increase computational efficiency by taking 
larger time steps. Both analytically steady state and time dependent solutions are examined to 
investigate stability properties and discretization errors in time and space. Implicit methods 
require more computation per time step than explicit methods for solution of the shallow 
water equations. However, the total time for a simulation can be less with the implicit method. 
The ADI formalism also has advantages of importance for more physically complex 
problems. 

Multidimensional problems in spherical geometry naturally arise in attempting 
global solutions with a central force field, e.g., the meteorological problem of 
modeling atmospheric circulation or the astrophysical problem of modeling the solar 
convection zone and interior. Many numerical methods have been developed for 
solving multidimensional hydrodynamics problems in Cartesian coordinates, e.g., the 
Navier-Stokes equations modeling flows over airfoils. Numerical solutions of systems 
of partial differential equations in spherical geometry have generally been limited to 
explicit methods. Explicit methods for multidimensional problems in spherical 
geometry have been used for two reasons: (1) Sound waves are usually the highest 
frequency waves which are present in the system. The computational burden of an 
explicit scheme when these waves are present is excessive. Sound waves are usually 
excluded by some additional assumption, e.g., the hydrostatic approximation. Once 
these waves are removed an explicit scheme becomes more attractive. (2) The 
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computational and programming efforts required for implicit calculations have 
generally been much greater than the effort required for explicit solutions. 

The noniterative Douglas-Gunn [ 1 ] formalism for generating alternating-direction 
implicit schemes, as developed by Briley and McDonald [2], is an efficient implicit 
method which is straightforward to program. The unconditional stability associated 
with the implicit technique allows longer time steps which offset the increased effort 
per time step relative to explicit methods. The use of compact, Pade (first and second 
order spatial derivatives are approximated using only three adjacent points) fourth 
order differences [ 3,4] allows a significant reduction in the number of grid points to 
obtain a specified accuracy. 

In the astrophysical context the model equations are often solved over a domain 
which includes a very broad range of physical properties. For example, a global 
model of the sun must contend with sound speeds of greater than 500 km set-’ near 
the core and less than 10 km set-’ near the surface. The simultaneous presence of 
such discrepant conditions in a single model leads to the necessity of very short time 
steps for an explicit approximation if the core is adequately resolved spatially. In a 
reasonably zoned multidimensional model of the sun the Courant-Friedrichs-Lewy 
(CFL) condition (dt < ,4x/(] u ] + c), where Ax is the mesh size, u is the flow velocity, 
and c is the sound speed) restricts explicit time steps to At < 1 sec. Since the time 
scales on which model changes of interest occur are many orders of magnitude 
greater than 1 set the CFL coondition makes realistic computer simulations imprac- 
tical. With an unconditionally stable AD1 scheme the unreasonable time step 
restriction of an explicit scheme is avoided. Furthermore the AD1 formalism allows 
for a straightforward inclusion of complex auxiliary physics which would be quite 
cumbersome in an explicit algorithm. 

An alternative approach to circumventing the severe CFL restriction due to 
acoustic waves is to filter out the sound waves by dropping the time derivative of 
density in the continuity equation. This anelastic approximation allows an explicit 
solution of the model equations in which sound waves have been suppressed. 
However, this approximation is valid only for cases in which the resulting flow 
velocities remain small compared to the sound speed. In the outer layers of the solar 
convection zone the convective velocities approach the sound speed, thus invalidating 
use of the anelastic approximation. Thus to model the outer, directly observable, 
convective layers of the sun a more general approach which is capable of following 
advective flows with Mach numbers approaching unity is desirable. 

As a first step in the development of a three-dimensional code for compressible 
hydrodynamics (e.g., as required for detailed study of the solar convection zone) 
various two-dimensional numerical solutions of the shallow water equations on a 
sphere are studied. Explicit time differencing with second order spatial accuracy is 
developed as a base case. The technique of primary interest is a spatially fourth order 
approximation over the two angular coordinates on a sphere with second order 
implicit temporal accuracy. 
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SHALLOW WATER EQUATIONS 

Throughout this paper spherical polar coordinates with 8 = colatitude, 
o = longitude are used as a basis for the differential and finite difference forms of the 
governing equations. The primitive barotropic model equations written in advection 
form are (e.g., see [5]) 

au -u au v au g ah _---p----- 
at - a sin2 8 a(o a sin e ae a au, 

Vf9 

C% -uav v &I gsin 8 LJh u2 + v2 ____-----~- 
;it - a sin’ e acp a sine ae ae+ac0se+u4 0) 

a 

ah - u ah v ah h au h av _~-_--- 
at - a sin2 e a9 a sin e ae ii%% ap --asine (lc) 

where u is longitudinal velocity, v is latitudinal velocity, h is height of the free 
surface, g is gravity, a is the radius of the earth, and the physical Coriolis parameter 
isf= 252 cos 8 (sl is angular rotation frequency). In order to simplify treatment at the 
poles the above equations are the result of transforming the standard pseudo-vectors 
U, = ad sin B and u, = ad by u = sin &@, v = sin Oue. For continuous flow across a 
pole the vector velocity components u, and ug are discontinuous. The scalar 
components U, v are continuous across a pole. By introducing the above transfor- 
mation, which is used in spherical harmonic expansions of u, and U, [6] to maintain 
uniform convergence at the poles, complicated special treatments [5] of the difference 
equations near the poles can be avoided. 

The primitive shallow water equations (la)-(lc) have an analytic steady state 
solution of zonal geostrophic flow. Introducing a rotated coordinate system [ 5 ] and 
the Coriolis term, f = 20 sin f? cos p, the solution with flow across poles is 

u = -24, cos q cos e sin e, 

v = -24, sin cp sin 0, (2) 

h = h, - T sin* 8 cos2 q. 

The constants which roughly correspond to parameters for the earth are 

u. = 500.0 cm set-‘, 

g = 980.0 cm set-*, 

h, = 3.0 x 10’ cm, 

R = 7.3 X low5 set-‘, 

a = 6.4 x 10’ cm. 

(3) 
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The above equations will be used to test for both spatial and temporal 
discretization errors [7,8] and stability limits of the CFL type. A time dependent 
solution with balanced initial conditions (91 to be used for energy conservation 
checks is 

s=sin8 

A(8) = +~(2l2 + w)s’ + ;w*s~~[(R + l)s* + (2R2 -R - 2) - 2R*s-*I, 

B(e)= 
2(R+w)w s”[(R2+2R+2)-(R+ l)*s*], 

(R + l)(R + 2) 

C(0) = &*sZR [ (R + 1)s’ - (R + 2)] 

u = aus2 + amR [R cos* 0 - s*] cos Rrp, 

v = auRsR cos 8 sin Rq, 

h = h, + $ (A (0) + B(6) cos Rrp + C(0) cos 2Rq), 

(4) 

with h,= 8.0 x lo5 cm, o = 7.821 x lop6 see-‘, and R =4.0. Total energy (kinetic + 
potential) should be conserved during an integration of (la)-(lc) with initial 
conditions (4). This represents a solution with wavenumber four which rotates around 
the globe in longitude with frequency ~J2/30.0. 

COMPUTATIONAL GRID 

The grid adopted for this study uses equally spaced intervals in both 0 and rp. It is 
desirable to have points on the equator, but not to have a point at the poles where cp 
derivatives are indefinite. To facilitate taking derivatives across the poles the 8 
spacing across the pole of points on common longitude circles should be equal to the 
general 0 spacing. The above requirements can be met by restricting Al3 = Aa, = 
180”/(2n + 1), where n is an integer. This places latitude circles l/248 from each 
pole and at the equator. For this study values of n = 7 and 22 have been selected 
which yield integral angular spacings of A0 = 12 and 4O, respectively. The choice of a 
uniform grid produces the well known pole problem-a crowding of points in 
longitude by the sin 0 factor at high latitudes. The crowding near the poles leads to a 
very restrictive CFL condition for explicit time steps, but this should not be a 
significant problem with the AD1 methods. The simplicity of having equal increments 
in 8 and in q (but not necessarily A0 = Aq) over the full grid is desirable for efficient 
implementation of fourth order and alternating-direction implicit schemes. 
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EXPLICIT SOLUTIONS 

Anticipating the need for a compact notation the shallow water equations may be 
written as (following notation of [2]) 

aH(x)/at = D(x) + S(x), (5) 

where x is the column vector, xr = (u, u, h) (superscript T implies transpose), H and 
S are column vector functions of x, and D is a column vector of differential 
operations. In the present context 

H = x, (6) 

ST(x)= ( -v&&ose+us,o ) 1 (7) 

D;(x) = 
-V a~ gsin8 ah -v ah h &I 

----- ----- asin M asine a0 a a3 asin a0 asin ae 3 (8) 

D;(x) = (9) 

where D(x) = De(x) + D,(x). Using the notation of Eq. (5) the explicit solutions are 
obtained using leap-frog differencing as 

H=+‘(x) = H”-‘(x) + 2At[D”(x) + S”(x)], (10) 

where the superscript n implies evaluation of the grid function at time t = n dt. This 
yields a second order accurate scheme in time. 

Second order spatial derivatives are evaluated by the standard central difference 
form, e.g., (a/ae)(x,) = (1/2dB)(Xi+, -Xi-l ). Cyclic boundary conditions are simply 
applied by making the identification xN+ r = x, and x,, = xN- i , where N is the number 
of grid points over a full latitude or longitude circle. The algorithm (10) can be 
trivially coded and represents a very fast solution per time step. As expected, 
integrations of (10) with At exceeding that allowed by the CFL condition lead to 
instabilities. See Table I for a summary of test runs of the analytically steady state 
solution and Table II of the time variable solution. Solutions at different grid 
resolutions confirm second order accuracy. 

Fourth order spatial derivatives are evaluated by solving a set of linear equations 
coupling three adjacent derivatives Qi with the standard second order central 
differences as source terms. This system is [3 ] 

where the Qi are fourth order derivatives. Note that this is a globally dependent 
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solution for the spatial derivatives. The above system generates a cyclic, symmetric 
matrix equation which can be efficiently solved by a simplified version of the 
Ahlberg-Nilson-Walsh algorithm [lo] for cyclic tridiagonal matrices (a generalized 
version for handling cyclic block tridiagonal matrices is presented below). The 
solution of (10) then follows with the Qi used in evaluating D”(x). In applying cyclic 
boundary conditions in both rp and 6 it is useful to note that a mapping exists to 
transform a discrete array x(0 = 0 to II, rp = 0 to 2n) into an equivalent array 
x’(a, = 0 to 71, e = 0 to 277). u sing this mapping cyclic boundary conditions can be 
trivially applied by following great circles in 0 as well as rp. 

For smooth solutions the fourth order compact differencing works very well in 
comparison with the second order scheme. An accuracy increase of more than two 
orders of magnitude is obtained at an increase of less than a factor of 2 in computer 
time (see Table I). As noted in [3] the CFL condition is reduced for the fourth order 
scheme, but this is more than offset by the possibility of using fewer grid points to 
obtain a given discretization accuracy and less restrictive CFL limit. As would be 
expected by the improvement in accuracy energy conservation is also better with the 
fourth order scheme (Table II). 

A comparison of the accuracy of compact, Pade differences with a central five 
point formula, e.g., (ala@ = (1/12@(-x,+~ + 8Xi+, - 8x,-, + xi-*), also shows 
the superiority of compact differences. The compact differences have a coefficient in 
the truncation error which is smaller by a factor of 6 with respect to the above five 
point formula [3]. The computations listed in Table I show a factor of 5.9 gain in 
accuracy with compact differences with a loss of only -10% in computational speed. 
Thus a grid coarser by (5.9)“4 z 1.56 can be used with the compact differencing to 
obtain the same accuracy as that obtained with the live point formula. A factor of 
1.56 in each of three dimensions translates to an overall reduction of about 3.8 in the 
required number of grid points. 

ALTERNATING-DIRECTION IMPLICIT SOLUTIONS 

For a recent and thorough review of linearized block implicit schemes for the 
numerical solution of systems of nonlinear multidimensional partial differential 
equations see Briley and McDonald [ 111. As with most implicit methods the present 
one involves a Taylor series expansion in time. In standard approaches the expansion 
is done about the time level to be solved for resulting in a system of nonlinear 
algebraic equations which must be solved by an iterative technique, e.g., the 
Newton-Raphson method. The method to be used here utilizes an expansion about 
the known time level, coupled with use of the Douglas-Gunn [ 1 ] technique for 
deriving AD1 schemes, to generate a system of linear difference equations for the 
dependent variables at the new time level. This has the obvious advantage that the 
solution is obtained in one direct step without iteration. 

The AD1 solutions obtained with second order spatial differences follow the 
method of [2] with the exception of cyclic boundary conditions. This linearization 
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technique is conceptually equivalent to that used by Beam and Warming [4]. The 
temporal discretization of (5) may be expressed as 

H”+‘(x)=H”(x)+pdt(D”+‘(x)+S”+~(x)]+(l-~)~t[~”(x)+S”(x)], (12) 

where /? is a centering parameter, e.g., p = 0.5 yields Crank-Nicolson (second order) 
and /I = 1.0 yields a backward (first order) difference form. For the shallow water 
equations the two step Douglas-Gunn AD1 solution of (12) can be written 

=At F:,~x”+F;~~x”+S” 
[ ayl 1 , 

I -/I At: I/‘+’ 
I 

aFBl7 a x” 
I 

tIt1 
a~ ae w 

where the Frpg, G,, , Fog, and G,, (see Appendix) are defined as in [2]: 

%A4 $- G,,(x) = 4,(x), 

a 
F;,(x) - G,,(x) = 41,(x). ae 

(13b) 

(14b) 

Differencing Eq. (13a) leads to the system of equations 

Differencing Eq. (13b) leads to a similar set of equations. The second order spatial 
difference solution explicitly follows the formalism of (21 in generating the ai, bi, ci 
and di for (15); therefore further details are deferred to the Appendix. Systems (15) 
for successive AD1 steps determine the consistent intermediate and final approx- 
imations to w” + ’ = Y + ’ - x”. The above solutions are often referred to as the “delta” 
form, where one solves for changes in given quantities, rather than for the full quan- 
tities. The delta form is presumably better from the standpoint of roundoff error 
accumulation. An examination of Tables I and II show that the AD1 solution 
compares favorably with explicit solutions regarding accuracy. The maximum time 
step allowed for the explicit scheme can be exceeded by more than an order of 
magnitude, confirming unconditional stability. 

The claim [2] that the computational effort per time step for the AD1 solutions is 
only about twice that of explicit methods is not supported by this study. The 
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computational timing ratio for this very simple test case is approximately 80-90. The 
high observed ratio in implicit to explicit run time may be highly dependent on the 
vector processing capability of the CRAY-1 computer used for this study. The 
explicit scheme is easily and fully vectorized, while the implicit computational 
scheme is only partly vectorized due to the increased complexity of block inversion 
algorithms. A rough operation count [2] for the periodic block-tridiagonal 
eliminations [(3N - 2)(m3 + m”) plus a factor of -1.4 for periodic boundary 
conditions] yields -3OON’ operations for the two AD1 sweeps, where N* is the total 
number of grid points and m = 3 the block size. Evaluating Eq. (1) for either the 
explicit or implicit schemes requires -5ON* operations. The operation counts suggest 
a basic computational labor ratio of order 350/50 or 7. It should be noted that the 
ratio of computational time for the AD1 to explicit solution would drop significantly 
as the overhead of more complex physics is added to a problem. In a computation 
where evaluation of an equation of state is the dominate time element the AD1 to 
explicit ratio would approach unity. For typical problems of astrophysical interest the 
AD1 computational burden could be expected to be less than an order of magnitude 
more per time step than the corresponding explicit solution. 

The cyclic boundary conditions inherent in Eq. (15) for spherical polar coordinates 
introduce blocks in the antidiagonal corners of a block tridiagonal matrix. The 
resulting matrix equations take the form 

b, c, * . . WI 4 
w2 4 

. . . 

. . a 1 lb1 I:! = 

wn-I d’ ’ 
(16) 

n-l 
c, . * * a, b, wn 4 

where the ai, bi, ci are m x m square matrices (3 X 3 for shallow water equations), 
and vi and di are column vectors. 

The generalized Ahlberg-Nilson-Walsh algorithm [lo] (see also Appendix B of 
Schnack and Killeen [ 121) for solving the above system is as follows: 

For i = 1 solve the augmented system 

[b, I -cl, -a,, 41; 
this is a set of linear equations with 2m + 1 right hand sides. 

Place solution vectors in 

[b,,c,,d,l. 
For i = 2 to IZ - 1 solve the augmented systems 

[aibi-1 + bi 1 -Ci,-aici-l, dieaid,-,] 

and place solution vectors in 
[bi, ci, di]. (17) 
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Now do a backward sweep: 

For i=n- 1, a,-,=~,-, +b,-,. 
For i = n - 2 to 1 set 

Qi = biUi+ I + Ci, 

di=bidi+* +di. 

For the solution at i = n solve the augmented system 

and place the solution vector in d,. 
A final sweep generates the remaining solution vectors. 
For i= 1 to n-l set di=di+aid,. 

The above is a very efficient algorithm both in terms of execution speed, when 
properly programmed, and in terms of storage requirements. The execution time for 
the cyclic algorithm is only -40% greater than that for the simpler algorithm for 
block tridiagonal systems. (All computations have been done on the NCAR CRAY- 
1 A computer.) 

The fourth order compact differencing scheme leads to a cyclic block tridiagonal 
matrix structure as in the second order AD1 case (see [4] for fourth order solutions 
in Cartesian coordinates and [ 131 for the introduction of periodic Cartesian 
boundary conditions). However, for a given AD1 sweep the dimension of the blocks 
increases since the spatial derivatives are now evaluated implicitly and 
simultaneously with the dependent variables. As before, cyclic boundary conditions 
are easily applied. The structure of the blocks is significantly altered in the fourth 
order scheme. Equations (13a), (13b) become, in the fourth order scheme, 

= At[F,T,Pm + F&P, + $1, 

+ Qf,i-1 + 4Q$,i t Q,*,i+ 1 = 0, (184 

(18b) 
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Equation (18a) can be rewritten as (with a similar representation for (18b)) 

(19) 

The P, = (a/+)(x) and P, = @/iM)( x are column vectors of fourth order differences ) 
evaluated explicitly at time level n by solution of a symmetric, cyclic tridiagonal 
matrix (Eq. (11)) for each component derivative. The blocks a;, bj’, cl and vector dl 
are now of twice the dimension of those in Eq. (15); however, the fourth order blocks 
are sparser. The al, etc., written as partitioned matrices where the partitions are of 
rank 3, become 

[a;] = 
[$I [cll= [$I ) 

M’l = 

I;;, t (x”)~ 2 

41 ‘I. (20) 

[41= [ 
At(F;,P, t F&P, t S;) 

() J. 

Although inclusion of fourth order differencing doubles the rank of the 
submatrices, which should increase by x 7 the number of required operations, the 
submatrices have simple properties. The solution algorithm (17) can be significantly 
optimized to take account of the simple structures of al, cl, and dl. With the 
simplified matrix multiplies the compact fourth order solution requires only 80% 
more computer time per step than the second order solution. The computed accuracy 
is fourth order as expected. As with the second order AD1 scheme the CFL time step 
can be exceeded by more than an order of magnitude. 

The use of five point central differences to yield fourth order spatial accuracy 
would result in a block pentadiagonal system analogous to (13a>-( 13b) and (15) for 
the AD1 solution. The blocks would be only m x m dimensional, but not sparse as 
with the 2m x 2m blocks (20) of the compact scheme. The solution of a dense m X m 
pentadiagonal system (with a total of six antidiagonal blocks for the cyclic case) 
would presumably take more computer time than that of the sparse 2m X 2m 
tridiagonal system (19). Thus for the AD1 solution of the shallow water equations (1) 
the Padt differences are superior in terms of both computational speed and accuracy. 
However, for a case with mixed order derivatives the block size for the Pade 
operators must be increased, while the five point formulas are completely general for 
second order systems. 
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COMPUTATIONAL ACCURACY AND STABILITY 

As argued above and demonstrated by the solutions of (2) given in Table I the 
fourth order compact differencing schemes show substantial advantages over the 
second order schemes. The increase in computer time (less than a factor of 2) is more 
than offset by the gain in accuracy. The results for energy conservation as given in 
Table II are also favorable for the AD1 schemes. A comparison of the explicit and 
AD1 solutions at the same spatial resolution and time step show very little difference, 
with the AD1 having -10% smaller total energy changes. At 12” grid spacing the 
fourth order schemes conserve energy better by more than an order of magnitude with 
respect to the second order schemes. At time steps greater than 10 times the CFL 
condition the total energy change is still only 0.26% for the fourth order AD1 

TABLE I 

Computational Speed and Accuracy for Steady State Solution 

Method-Order-Grid Time 
spacing step 

(degrees) (set) Error0 

Computer Courant 
time/step limit 

WI (set) P 

Explicit 2nd 12 50 
Explicit 2nd 12 100 
Explicit 2nd 12 900 
Explicit 2nd 4 50 
Explicit 2nd 4 100 

Explicit 4th 12 100 
Explicit 4th 12 500 
Explicit 4th 4 25 

Explicit 4th(5) 12 100 

Implicit 2nd 12 100 
Implicit 2nd 12 900 
Implicit 2nd 12 900 
Implicit 2nd 12 4000 
Implicit 2nd 12 10000 
Implicit 2nd 4 100 

Implicit 4th 12 100 
Implicit 4th 12 4000 
Implicit 4th 12 4000 
Implicit 4th 12 4000 
Implicit 4th 12 8000 
Implicit 4th 12 8000 
Implicit 4th 12 8000 

7.53-3* 8.50-4 842. 
7.54-3 8.5&4 842. 

Diverged 8.50-4 842. 
8.30-4 4.97-3 94. 

Diverged 4.97-3 94. 

4.37-5 1.46-3 345. 
Diverged 1.46-3 345. 

5.40-7 1.28-2 38. 

2.58-4 1.35-3 614. 

7.5&3 7.24-2 842. 
7.49-3 7.24-2 842. 
6.9 1-3 7.24-2 842. 
1.54-2 7.24-2 842. 

Diverged 7.24-2 842. 
8.284 6.52-l 94. 

4.38-5 
7.5 l-5 
7.54-5 
8.2&5 
2.3 l-2 
4.28-2 

Diverged 

1.3&l 
1.30-l 
1.30-l 
1.30-I 
1.30-I 
1.30-l 
1.30-l 

345. 
345. 
345. 
345. 
345. 
345. 
345. 

0.5 
0.5 
1.0 
0.5 
0.5 
0.5 

0.5 
0.5 
0.51 
0.75 
0.5001 
0.51 
0.55 

’ Root mean square deviation of discretized variables from analytic solution. 
bSigned integer indicates power of 10 to multiply the mantissa. 
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solution over 7 days. The second order AD1 solution at large At encounters a 
nonlinear instability after -6 days; the increased resolution of the fourth order 
scheme allows evolution through 7 days with no problems. The solutions at 12” in 
second order develop high frequency gravity waves at an amplitude of -1% of the 
total geopotential height, fourth order solutions reduce the initial imbalance, resulting 
in amplitudes of the gravity waves of -0.1%. 

As can be seen from an examination of Tables I and II variation of ,8 (time 
centering) for the implicit solutions has generally small effects on the solution. The 
accuracy of a real steady state solution should not have any relation to the accuracy 
of the temporal differencing. The solutions of (2) are steady state only in an analytic 
sense. The solutions given in Table I are time dependent numerical solutions (with 
spatial truncation errors) which approximate the analytically time independent, 
steady state solution [5, 7,8]. For the steady state solutions of Table I accuracy is 
not sensitive to the temporal differencing (see below also). Stability is not sensitive to 
variation of p for time steps much greater than the CFL condition. With respect to 
energy conservation (Table II) the error increases slightly for larger /3. 

The numerical simulations (see Table I) of the analytically steady state solution (2) 
are independent of the time step for steps not greatly in excess of the Courant limit. 
The numerical solutions for time steps less than or about the Courant limit show 
deviations from the analytic solution which vary by a factor of about 3 over 

TABLE I1 

Energy Conservation with Time Dependent Solution 

Method-Order-Grid Time 
spacing step 

(degrees) (see) 
AE (%) 

7 days 

Explicit 2nd 4 45. +2.5-3 
Explicit 2nd 12 45. -1.3-2 
Explicit 2nd 12 180. -1.2-2 

Explicit 4th 12 180. -1.3-2 

Implicit 2nd 12 180. -4.9-2 
Implicit 2nd 12 1800. Diverged 
Implicit 2nd 12 1800. Diverged 

Implicit 4th 12 180. 9.0-3 
Implicit 4th 12 1800. 2.1-l 
Implicit 4th 12 1800. 2.6-l 
Implicit 4th I2 2400. 2.5-l 
Implicit 4th 12 3600. Diverged 

AE/E 

4.3-5 
2.&3 
2&3 

1.94 

1.9-3 

1.74 
2.2-3 
2.8-3 
2.6-3 

Courant 
limit 
(set 1 P 

Computer 
time (set) 
at 5 days 

57.3 56.1 
516. 11.4 
516. 2.9 

211.4 4.9 

516. 
516. 
516. 

0.5 
0.5 
0.5 1 

0.5 
0.5 
0.75 
0.5 
0.5 

243. 
24.3 
24.3 

211.4 
211.4 
211.4 
211.4 
211.4 

437. 
43.7 
43.7 
29.1 

’ Change in sum of potential and kinetic energies with respect to initial conditions. AE/E refers to the 
difference of maximum and minimum total energies relative to the energy over the full 7-days 
integration. 
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0.25 days (-200 steps at dt = 100 set). This variation is steady in time with the 
maximum error for several extended test runs not exceeding that listed in Table I. The 
explicit solutions experience exponential error growth for time steps in excess of the 
Courant limit. The AD1 simulations of the analytically steady-state solution (2) are 
time dependent for time steps much greater than the Courant limit. For the fourth 
order solutions at 12’ resolution and At = 4000 set (-12 x Courant limit) maximum 
deviations from the analytical solution grow slowly over the lo-day test integration. 

Table I gives results for analytically steady state solutions (2 and 3) of the shallow 
water equations (la)-(lc). All errors are maximum change over integrations of 0.25 
days, or 200 time steps, whichever is larger. Five point difference scheme is denoted 
in first column by 4th(5). 

Table II gives results for time dependent solutions (4) of the shallow water 
equations (la)-( lc). 

ALTERNATE TIME DISCRETIZATIONS AND GRAVITY WAVES 

The implicit solutions considered above have been based on the two time level 
discretization of Eq. (12) in which all terms in the equations are centered at the same 
time. The most rapid wave solutions to the shallow water equations are generated by 
only the h,, h,, and h(u, + ue) terms. Although not unconditionally stable a semi- 
implicit scheme which evaluates only these terms implicitly will then allow the use of 
time steps limited only by the advection terms [ 141. Thus the fast mode gravity 
waves, which are usually not of interest for solutions of the shallow water equations, 
will not limit the allowed time step. Semi-implicit schemes for simple systems can be 
developed which are nearly as efficient computationally per time step as an explicit 
scheme. 

In order to compare results of the implicit discretization (12) with previously 
adopted [14] semi-implicit schemes the following time discretization of (5) has been 
implemented within the general AD1 framework 

H “+‘=H”-‘+At[D”+‘+D”-‘]+2AtS”. (21) 

Here only the terms responsible for the gravity waves are included in D(x), with all 
other terms being put in the explicitly evaluated S(X). The solution vector of Eq. (21) 
becomes I,# + ’ = x”+ ’ - x”- I, which requires only minor modifications of the AD1 
Eqs. (18a), (18b). At long time steps (At = 1800 set) numerical solutions using 
Eq. (21) are similar to those obtained with Eq. (12) through 3-4 days with numerical 
instability developing in the semi-implicit solution past day 4. 

In order to examine the treatment of the gravity wave modes initial solutions (4) 
were used with quadratic terms in w removed. This initial imbalance resulted in fast 
waves of amplitude -1% in the height field for the fourth order 12” resolution 
approximation. With short (At = 180 set) time steps numerical integrations using the 
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semi-implicit (21) and explicit (10) algorithms yielded nearly identical results with 
the gravity waves maintaining the same amplitude through 7 days, A short time step 
integration using the implicit (12) scheme with /I = 0.5 shows a damping of the fast 
mode by a factor of 2 over each 3-day interval. The implicit scheme thus has a small 
numerical dissipation not present in the other schemes. The small numerical 
dissipation can explain the superior stability of the implicit scheme in relation to the 
dissipation free semi-implicit and explicit schemes. At short time steps the implicit 
scheme is slightly superior to the other schemes as regards conservation of total 
energy. Thus for problems in which the slow changes or advection terms are of 
primary interest the implicit scheme (12) is superior in terms of accuracy and 
stability. 

Accurate solutions of the fast waves are not possible with implicit or semi-implicit 
schemes with the time step chosen significantly longer than that allowed by the CFL 
condition [ 151. Since time steps shorter than the CFL limit are generally required 
to resolve the fast waves, the more efficient explicit methods should be used in this 
case. Clearly the implicit scheme which damps the fast modes would not be useful for 
their study. Therefore the choice of an approximation scheme must entail a careful 
consideration of the solution to be followed in the study. 

DISCUSSION 

Various methods for the solution of the shallow water equations on a sphere have 
been outlined. Variables have been used which permit periodic boundary conditions 
in both angular coordinates. Fourth order compact spatial differencing has been 
found to be superior to both second order differencing and a five point fourth order 
method. Normally boundary conditions pose significant complications for fourth 
order methods; however, cyclic conditions on a sphere are quite easily set in the 
fourth order scheme. The application of alternating-direction implicit techniques has 
been accomplished in two-dimensional spherical geometry. The equations studied 
above provide a worst case for comparison of AD1 solution speed to explicit 
solutions. Since the shallow water equations are closed without any auxiliary 
relations, e.g., an equation of state, essentially no overhead exists in addition to the 
mechanics of applying the time stepping in the explicit case. Thus the factor of 80-90 
speed loss of AD1 versus explicit methods may not be relevant for more complex 
problems. In the solution of physically complex problems the speed loss of AD1 to 
explicit methods would drop to less than 10. Since time steps more than an order of 
magnitude in excess of those allowed in explicit calculations are allowed, the AD1 
solution should be more efficient computationally for complex problems. The AD1 
formalism of [2] holds one final advantage over explicit techniques. Through the 
generality of (5) it would be possible to use variables which do not explicitly appear 
in the equations, but whose dependence through H(x), D(x), and S(x) is explicitly 
known. For example, in the construction of stellar models with realistic physics it is 
useful to parameterize the state variables (e.g., density and pressure) in terms of a 
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“degeneracy parameter” and temperature [ 161. The degeneracy parameter appears in 
the equations only implicitly through the auxiliary variables which depend upon it. 
To use such an equation of state in the Briley and McDonald AD1 formalism would 
be straightforward-maintaining the desired non-iterative property. (To maintain 
second order temporal accuracy will require adoption of a three-level difference 
scheme for the general case [ 171). However, inclusion of such an equation of state in 
an explicit or semi-implicit algorithm would require a very wasteful inverse iteration 
on the equation of state. 

The extension of the above two-dimensional AD1 scheme over spherical polar 
coordinates I!? and o to a full three-dimensional scheme over r, 6, and (p should be 
straightforward using the Douglas and Gunn [l] formalism. Assuming fourth order 
compact differencing in 8 and ~1, At9 = Aq, number of variables NEQU, and N, radial 
zones with second order central differencing the computation time per time step on a 
CRAY-1 computer will be -5.4(N,/30)(12”/A8)2(NEQ~/3)1.6 sec. The above 
estimate is based on timings for the solutions of Eqs. (18a), (18b) and solutions of 
algorithm (17) with variable NEQU. The inclusion of realistic physics would be 
expected to increase the above by (50%. 

APPENDIX 

The terms of Eq. (13a), (13b) which represent the shallow water equations (1) in 
the AD1 formalism are 

Frpq = 

Ftkl = 

-ll -h 
a sin* 6 

O- 
a sin* 6 

-u 
O---- 

a sin’ 0 
0 

-g o --u - 
a a sin* 8 

-v 
a sin B 

0 0 

0 
-v -h -- 

a sin e a sin 0 

0 
-g sin 19 -v 

a a sin 0 

where q corresponds to separate columns in the matrices. 

G,=G,=H=x=(u,v,h)? 

(AlI 

642) 
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The qth rows of matrices a,, bi, ci and vector di of Eq. (15) are 

a; = 

I 1 x. rtl 7 
I) +Fiqii$ / +S,li]. 
I I 

(‘43) 

Similar matrices exist for the second AD1 step as given by Eq. (13b). 
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